

From Lava's Heart to Life's Spark

Isha Datta*

Department Of Geology, Sister Nibedita Government Degree College for Girls, Kolkata, West Bengal, India

*Corresponding author: ishadatta127@gmail.com

ABSTRACT

The Krafla Magma Testbed (KMT) in Iceland builds on the legacy of the Iceland Deep Drilling Project (IDDP-1), which accidentally intersected magma in 2009 revealed the immense potential of supercritical geothermal systems (Krafla Magma Testbed, 2024c). KMT is the world's first planned effort to directly access magma, aiming to generate high-yield, carbon-neutral energy while advancing our understanding of magma behavior and volcanic hazards (Krafla Magma Testbed, 2024d; GEORG Geothermal Research Cluster, 2024). Unlike conventional geothermal projects that exploit hydrothermal reservoirs, KMT targets supercritical zones near magma bodies, where extreme heat pressure can produce energy yields up to ten times greater than traditional systems. Future KMT programs will expand this approach globally, developing resilient drilling technologies and sustainable energy solutions in volcanic regions (Lee and Song, 2020). Despite technical environmental risks, KMT represents a transformative step toward clean baseload power and improved volcanic monitoring for a safer, energy-secure future (Reinsch et al., 2017; National Renewable Energy Laboratory NREL, 2023). For countries like India, which possess significant geothermal potential but limited volcanic exposure, insights from KMT can guide tailored exploration strategies. Ultimately, the KMT project exemplifies how interdisciplinary research can convert the Earth's internal heat from the fiery depths of magma into a reliable, low-carbon energy source, bridging the gap between geological research and sustainable energy innovation.

ARTICLE HISTORY

Received: 10 October 2025

Revised: 06 November 2025

Accepted: 18 December 2025

KEYWORDS

Krafla Magma Testbed (KMT)

Iceland

magma drilling

supercritical geothermal systems

crustal processes

magma–fluid interactions

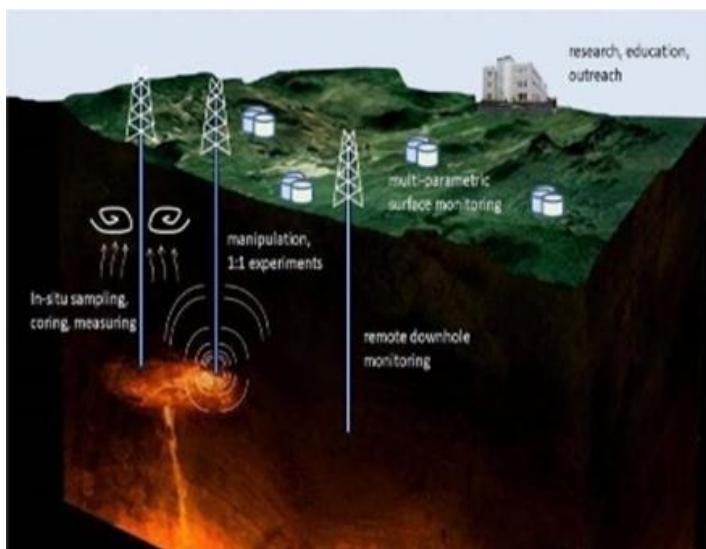
carbon-neutral power

sustainable energy

geothermal potential

I. INTRODUCTION

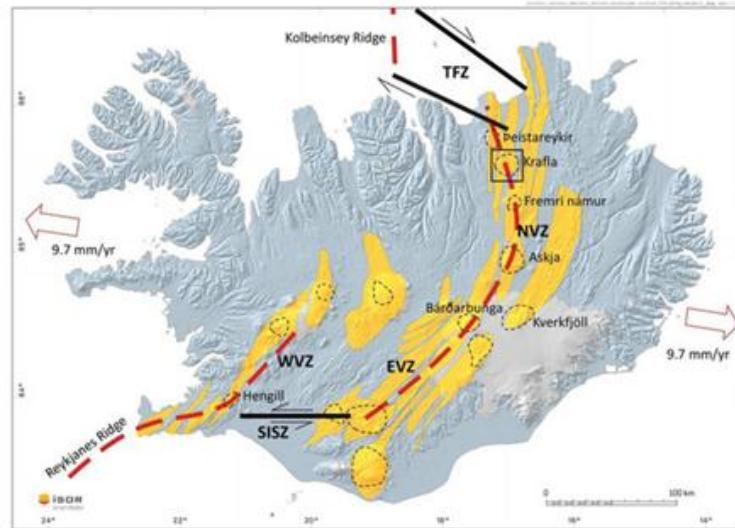
The Krafla Magma Testbed (KMT) represents a pioneering initiative in geothermal energy research, aiming to harness the immense thermal potential of magma-hosted environments. As the global population grows, so does the demand for energy. Continued reliance on fossil fuels releases carbon dioxide and other greenhouse gases, accelerating climate change (UNEP, 2023). This is why the world is shifting toward clean renewable energy alternatives like solar, wind, hydropower, geothermal energy (Bloomberg NEF, 2023). Geothermal energy sets out among renewables because its waste fluids can be reinjected, making it incredibly clean (Brown, 2019). Conventional geothermal energy usually taps into hot water or steam reservoirs beneath the Earth's surface, which is heated by the natural heat of the Earth (Axelsson, 2013). In contrast, KMT explores deeper zones beneath magma chambers where supercritical water exists (Krafla Magma Testbed, 2024a). Such systems can supply greater energy yields and provide a more stable source over longer periods (Lee and Song, 2020).


2. GEOTHERMAL ENERGY

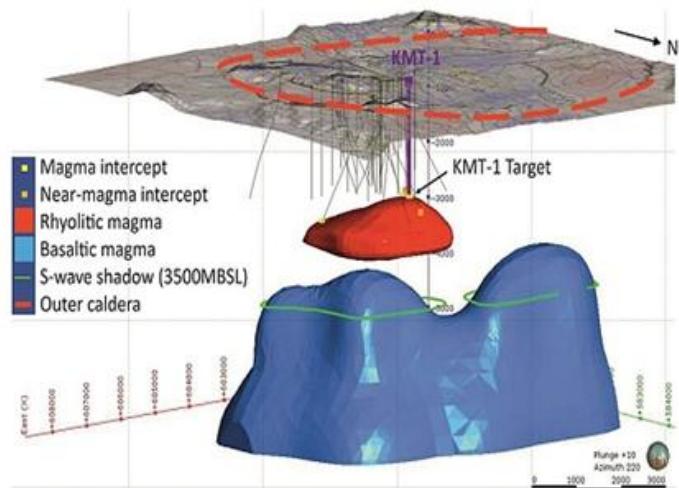
Geothermal energy is the heat stored within the Earth's crust, originating from planetary formation, radioactive decay (Axelsson, 2013) (Fig. 1). It is a sustainable, carbon-neutral resource used for heating, cooling, electricity generation. Conventional geothermal plants tap hot water, steam, or superheated fluids, whereas advanced systems like KMT target magma directly for supercritical fluids (Reinsch et al., 2017; NREL, 2023). Magma-based geothermal systems

produce minimal emissions can reinject fluids, maintaining a closed-loop, environmentally sustainable operation ([BloombergNEF, 2023](#); [GEORG: Geothermal Research Cluster, 2024](#)).

Figure 1. The Nesjavellir Geothermal Power Plant in Eingvallir Icel.


Figure 2. The KMT concept. A series of wells are kept open inside around the shallow magma intrusion at Krafla (2.1km depth). Temperature- corrosion-resistant instrumentation is placed inside the wells down to magma. The surface is heavily instrumented with an advanced multi-parametric monitoring network. Dedicated laboratories, offices, a visitor center complement the infrastructure. (Courtesy: [GEORG: Geothermal Research Cluster of Icel, 2024](#)).

2.1 Krafla Magma Testbed: overview objectives


The KMT project aims to understand magma behaviour under high pressures, temperatures, magma crystallisation, degassing, hydrothermal system dynamics, improve volcanic eruption forecasting ([Krafla Magma Testbed, 2024d](#)). Key goals include generating clean energy, increasing efficiency, exploring new geothermal energy sources ([Krafla Magma Testbed, 2024a](#); [Krafla Magma Testbed, 2024b](#)) as illustrated in the KMT concept (Fig. 2).

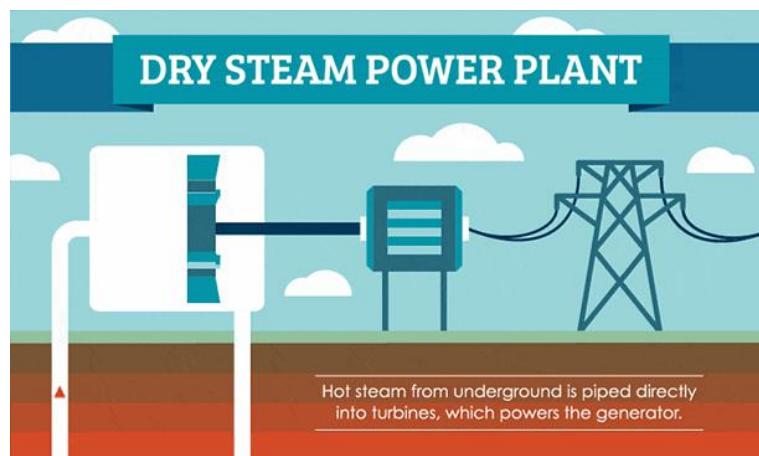
2.2 KMT: Powering progress

KMT is the world's first experiment designed to directly access magma for energy research ([Krafla Magma Testbed, 2024a](#); [Krafla Magma Testbed, 2024c](#)). Temperatures near 1,000°C allow for higher energy output long-term stability ([Lee Song, 2020](#)). Krafla, on the Mid-Atlantic Ridge ([Fig. 3](#)), is ideal for magma-based energy because of its thin crust, shallow magma, historical significance from IDDP-I ([Axelsson, 2013](#); [Brown, 2019](#)). The IDDP-I project revealed a near-liquid magma body at a depth of only 2.1km ([Fig. 4](#)). If KMT proves successful, the approach could be replicated in other volcanic regions worldwide.

Figure 3. A simplified tectonic map of Iceland showing the location of Krafla (black square). Red broken lines represent spreading zones. WVZ is the Western Volcanic Zone, EVZ is the Eastern Volcanic Zone, NVZ is the Northern Volcanic Zone. SISZ is the South Iceland Seismic/Transform Zone. TFZ is the Tjörnes Fracture/Transform Zone. Thin black broken lines show central volcanoes yellow-coloured areas fissure swarms.

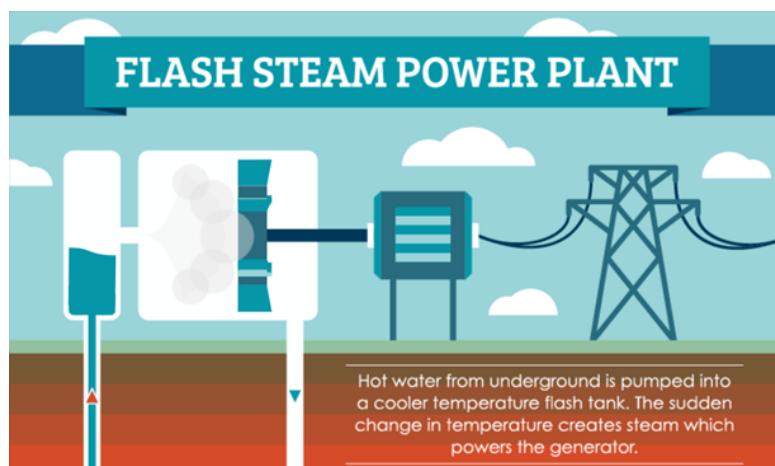
Figure 4. Simplified schematic of the magma system beneath Krafla caldera (dashed red line), showing boreholes drilled for geothermal development (gray). The location of one large, near-liquid rhyolite magma body (red) is based on data from the intersection near-intersection points with the boreholes, as shown. The rhyolite body sits above a region of basaltic magma (blue). The rhyolite basalt regions may be more complex, with multiple smaller bodies of magma. The planned KMT-1 borehole (purple) closely follows the path of the earlier IDDP-1 project.

2.3 Potential risks and rewards

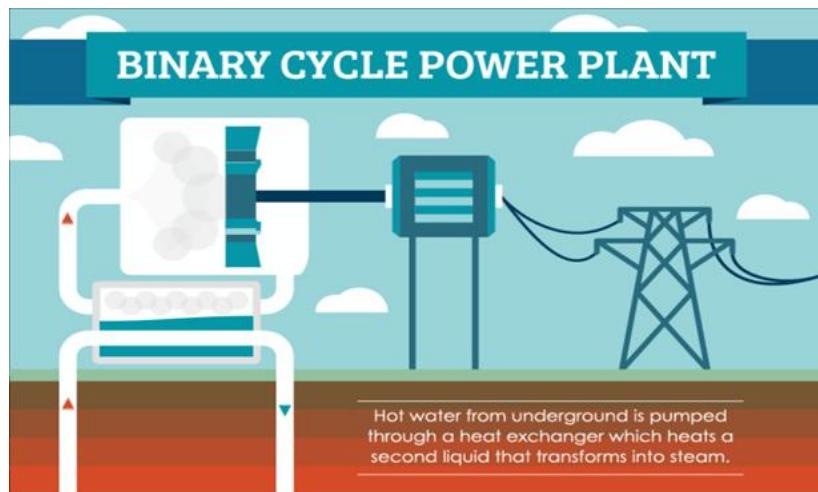

Magma-based geothermal energy is environmentally friendly reliable (Reinsch et al., 2017). However, drilling into magma carries risks such as seismic activity, extreme engineering requirements, high costs (NREL, 2023). Environmental monitoring controlled drilling are essential for safety (Krafla Magma Testbed, 2024b; Vox, 2025).

3. METHODOLOGY

Heat, fluid, permeability are the three critical elements for geothermal production (Lee Song, 2020). KMT will likely utilise Flash Steam or Binary Cycle technologies for electricity conversion due to extreme temperatures (Bloomberg NEF, 2023).


3.1 Geothermal Power Plant Technologies

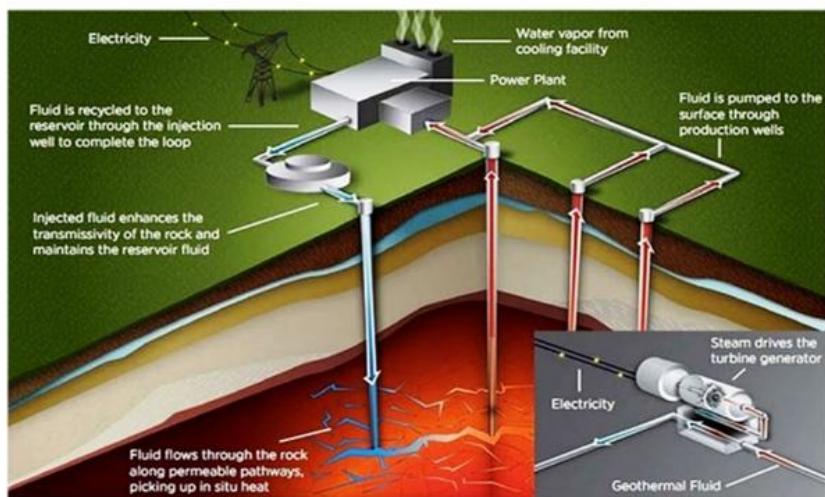
Dry Steam: Uses steam from underground reservoirs to drive a turbine generate electricity, then condenses reinjects it (see Fig. 5); the Larderello plant in Tuscany is the world's oldest dry steam power plant.


Figure 5. Dry steam plant using steam from underground to drive a turbine directly to generate electricity (Source: <https://www.saveonenergy.com/how-geothermal-energy-works>).

Flash Steam: High-pressure water ($>182^{\circ}\text{C}$) is brought to the surface, flashed into steam to power a turbine, the remaining liquid can be flashed again to extract more energy—ideal for moderately hot geothermal systems (Fig. 6).

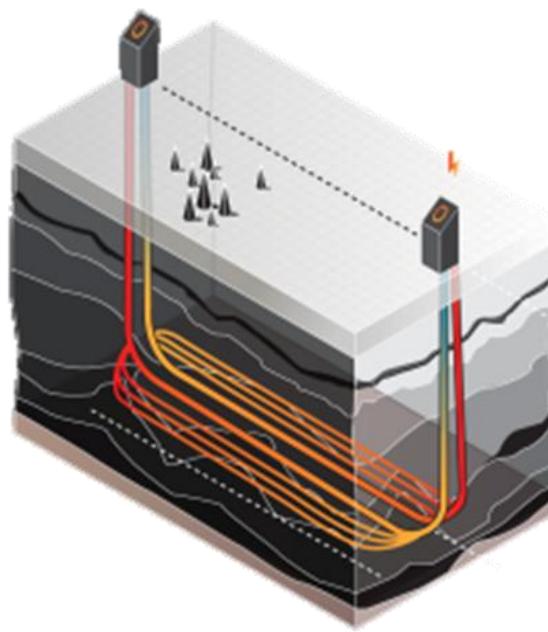
Figure 6. Flash steam plant using high-pressure hot water flashes into steam to power a turbine (Source: <https://www.saveonenergy.com/how-geothermal-energy-works>).

Binary Cycle: Uses lower-temperature water (<182°C) to heat a secondary fluid with a low boiling point, which vaporises to drive a turbine generate electricity—the geothermal fluid never contacts the turbine, making it ideal for lower-temperature reservoirs (Fig. 7).

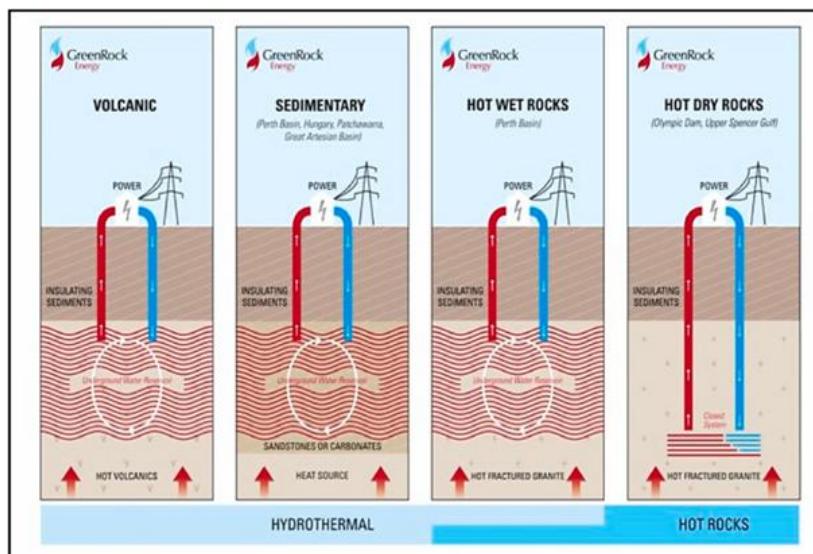

Figure 7. Binary cycle plant using underground heat transfers to a secondary fluid to generate electricity efficiently (Source: <https://www.saveonenergy.com/how-geothermal-energy-works>)

4. GEOTHERMAL RESOURCES

Hydrothermal Resources: Found in volcanic sedimentary regions (Axelsson, 2013).

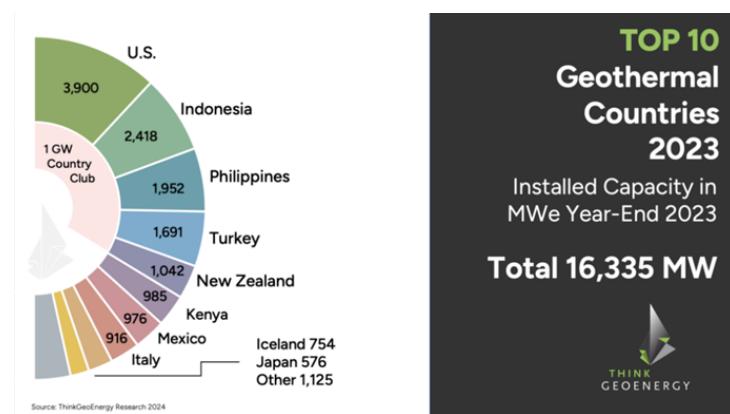

Enhanced/Engineered Geothermal Systems (EGS): Artificially improves permeability circulation fluids in hot rocks (Brown, 2019; Reinsch et al., 2017) (Fig. 8).

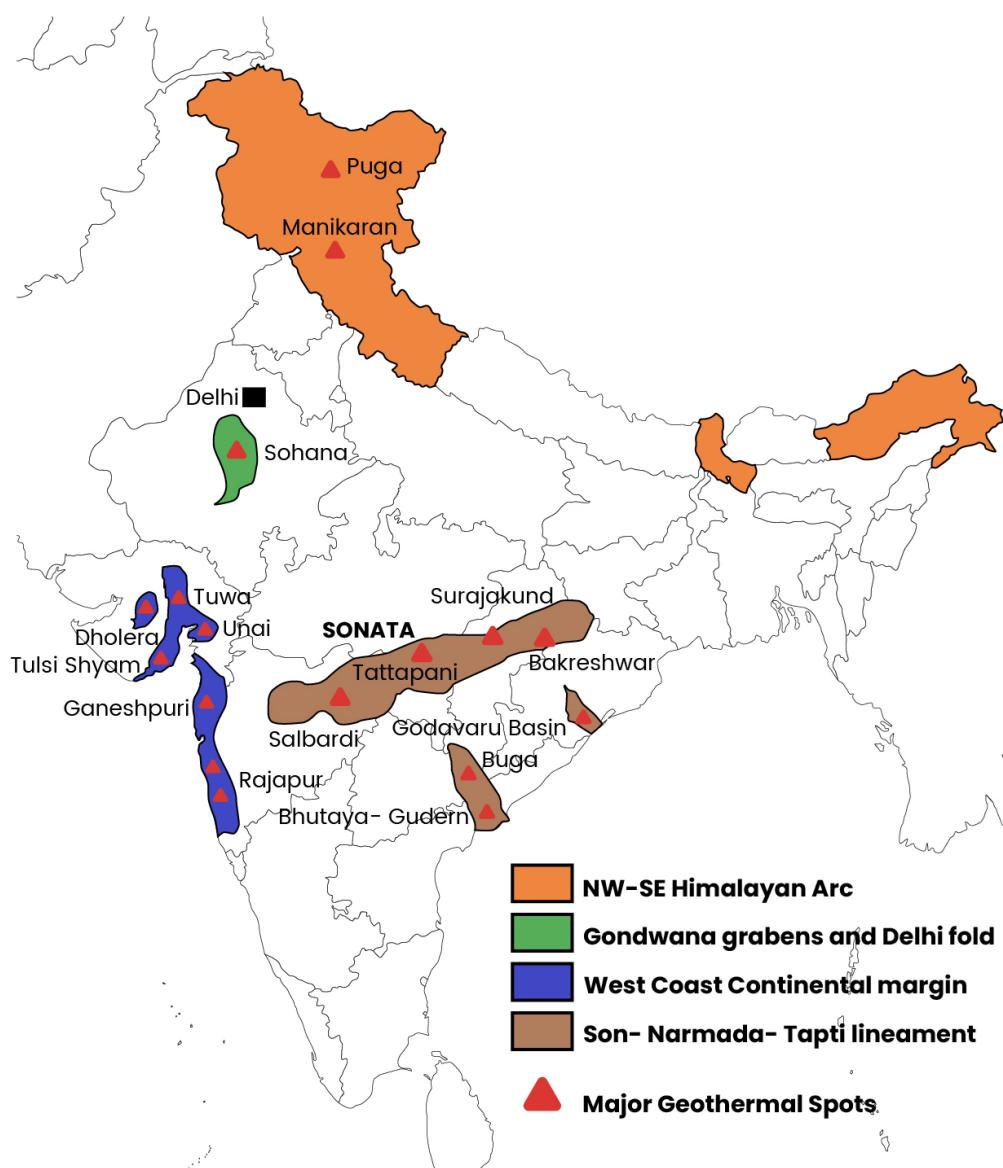
Geothermal Energy


Figure 8. Diagram showing the production of electricity using enhanced (engineered) geothermal systems (Source: U.S. Department of Energy).

Unconventional/Advanced Geothermal Systems: Closed-loop, supercritical, magma based systems (Krafla Magma Testbed, 2024a; Krafla Magma Testbed, 2024d; NREL, 2023) (Fig. 9).

Figure 9. The conceptual model of a closed-loop heat exchange through connecting wells in hot rock settings to extract the heat, here the concept of the pilot project by Eavor Technologies, Inc. From Canada (Source: [Eavor Technologies](#)).

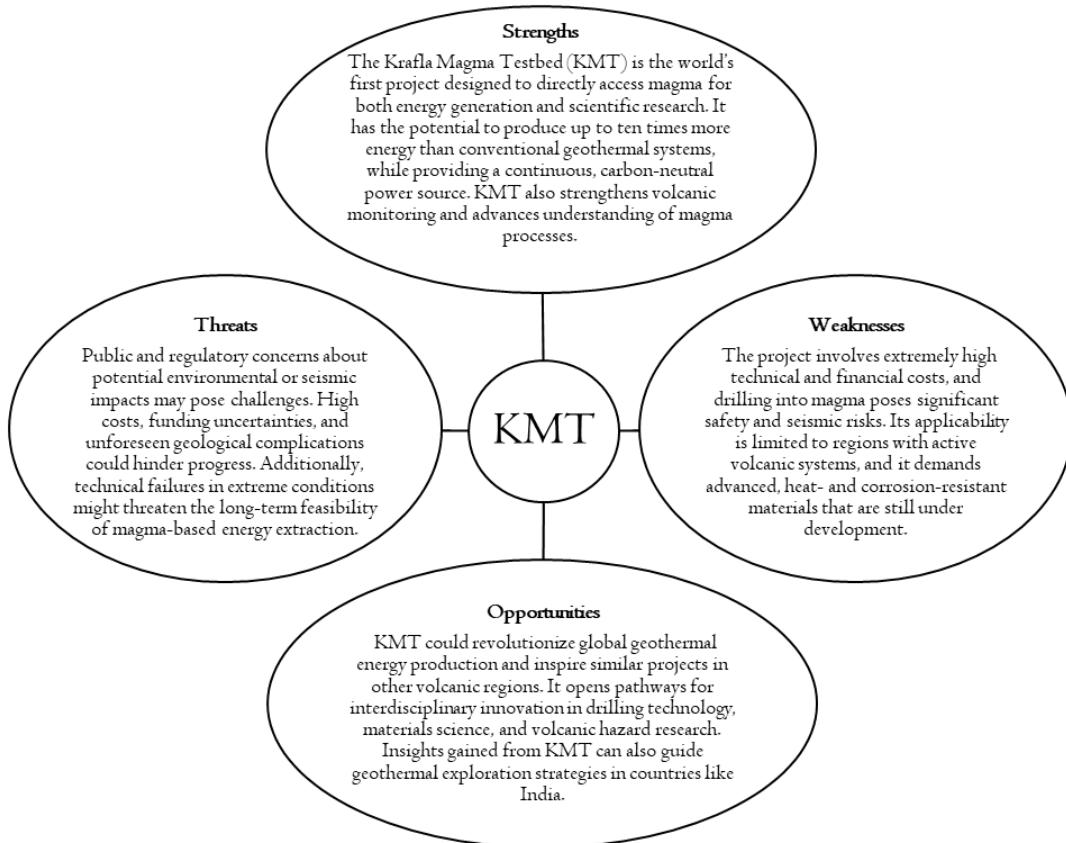

The type of resource (Fig. 10) determines how we can extract the thermal energy from the ground for extraction for energy utilisation on the surface.


Figure 10. The sources of geothermal energy – a graphic by Green Rock Energy, Australia ca. 2009, the picture is missing “Advanced Geothermal Systems”.

5. GLOBAL IMPACT FUTURE PROSPECTS

KMT could transform global geothermal energy generation ([UNEP, 2023](#); [World Bank, 2023](#)). Iceland already sources ~70% of electricity from geothermal energy, while other volcanic regions can benefit from KMT’s techniques ([Vox, 2025](#); [IEA, 2023](#)) (Fig. 11).

Figure II. ThinkGeoEnergy 2023 Top 10 Geothermal Countries - Installed Geothermal Power Generation Capacity.


Figure 12. Geothermal provinces in India.

In India, 381 geothermal sites (Fig. 12) have an estimated potential of 10,600 MW (Economic Times Energy, 2022; Wikipedia, 2025). Pilot plants in Parvati Valley Puga–Chumthang are ongoing, showcasing India's potential to adopt geothermal technologies (Economic Times Energy, 2022).

CONSUMPTION		
Category	2022	2023
Installed Capacity	14.6 GW	16.35 GW
Electricity Generation	101 TWh	97.3 TWh
Direct Use (excl. heat pumps)	155 TWh (560 PJ)	205 TWh (737 PJ)

Top Consumers	
Icel	90% of space heating from geothermal
USA	16.5 TWh (2023); 3.68 GW installed (2019)
China	~1.9 EJ direct use (2022)
Turkey	~34.4 PJ electricity + 81.8 PJ direct heat (2022)

6. CONCLUSIONS

Magma-based geothermal energy, exemplified by KMT, represents a sustainable solution to global energy demands (Krafla Magma Testbed, 2024a; Krafla Magma Testbed, 2024c). KMT advances energy research, volcanic hazard mitigation, sustainable power generation (Lee Song, 2020; Reinsch et al., 2017). The broader significance of KMT lies not only in its potential to revolutionize geothermal energy but also in its capacity to reshape our relationship with natural systems. As fossil fuel reserves decline the urgency for clean energy intensifies, projects like KMT demonstrate that innovation environmental stewardship can coexist. Lessons learned in Iceland ranging from supercritical fluid dynamics to advanced drilling materials—can inform geothermal initiatives in other tectonically active regions such as Indonesia, Japan, the Philippines, as well as guide exploratory efforts in India's geothermal provinces. KMT's global adoption could provide renewable, low-carbon energy while ensuring community safety economic growth (World Bank, 2023; UNEP, 2023). Moving forward, international collaboration, rigorous environmental monitoring, and responsible technological scaling will be crucial for translating KMT's achievements into global practice. With careful management, magma-based geothermal energy could become a cornerstone of sustainable development, providing continuous, low-emission electricity to future generations. By unlocking the power within the Earth's fiery core, humanity takes a decisive step toward an energy-secure, climate-resilient, harmonious coexistence with nature affirming that progress preservation need not be opposing forces. "Nature should exist naturally. Every climate action, no matter how small, contributes to the larger goal."

References

Axelsson, G. (2013). Geothermal development research in Iceland. Proceedings of the European Geothermal Congress 2013, Pisa, Italy. Retrieved from <https://orkustofnun.is>

BloombergNEF (2023). Global geothermal outlook 2023: Emerging frontiers in supercritical systems. Retrieved October 24, 2025, from <https://about.bnef.com>

Brown, D. W. (2019). Hot dry rock geothermal energy: Important lessons from Fenton Hill. *Geothermics*, 80, 104–113. <https://doi.org/10.1016/j.geothermics.2019.01.008>

Economic Times Energy (2022). Geothermal atlas of India 2022. Retrieved October 24, 2025, from <https://energy.economictimes.indiatimes.com>

GEORG: Geothermal Research Cluster (2024). KMT symposium and congress engagement. Retrieved October 24, 2025, from <https://georg.cluster.is/activities-in-2024>

International Energy Agency (IEA) (2023). Geothermal energy: Technology roadmap 2023. Paris, France: IEA Publications. Retrieved from <https://www.iea.org>

Krafla Magma Testbed (2024a). About KMT. Retrieved October 24, 2025, from <https://kmt.is/about>

Krafla Magma Testbed. (2024b). Funding and support secured. Retrieved October 24, 2025, from <https://kmt.is/kmt-government-industry-support>

Krafla Magma Testbed (2024c). History of KMT / IDDP-I. Retrieved October 24, 2025, from <https://kmt.is/history>

Krafla Magma Testbed (2024d). Science objectives. Retrieved October 24, 2025, from <https://kmt.is/science>

Lee, K. C. and Song, Y. (2020). Advances in drilling technology for high-temperature geothermal systems. *Renewable Sustainable Energy Reviews*, 121, p.109682. <https://doi.org/10.1016/j.rser.2020.109682>

National Renewable Energy Laboratory (NREL) (2023). Supercritical geothermal energy: Potential challenges. U.S. Department of Energy. Retrieved from <https://www.nrel.gov>

Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F. and Sanjuan, B. (2017). Utilization of supercritical geothermal systems: A review of past ventures ongoing research activities. *Geothermics*, 70, pp.52–73. <https://doi.org/10.1016/j.geothermics.2017.06.008>

United Nations Environment Programme (UNEP) (2023). Global geothermal development report 2023. Nairobi, Kenya: UNEP. Retrieved from <https://www.unep.org>

Vox (2025) A wild project in Icel could transform how we forecast volcanic eruptions. Vox. <https://www.vox.com/unexplainable/413156/krafla-magma-testbed-icel-volcanology-research>

Wikipedia (2025). Geothermal energy in India. In Wikipedia. Retrieved October 24, 2025, from https://en.wikipedia.org/wiki/Electricity_sector_in_India

World Bank (2023). Scaling up geothermal energy in developing countries. Washington, D.C.: World Bank Energy Sector Management Assistance Program (ESMAP). Retrieved from <https://www.worldbank.org/>